

Упаковочные решения и материалы: разработки и перспективы в рамках РОП

Зав. кафедрой промышленного дизайна, технологии упаковки и экспертизы, Директор ЦКП «Перспективные упаковочные решения и технологии рециклинга», д.х.н., профессор Кирш И.А.

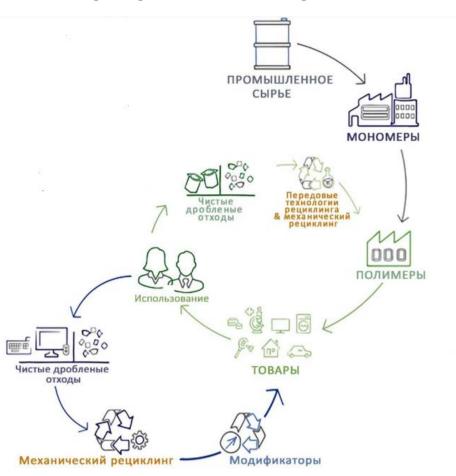
Тенденции в упаковке

- 1.Программа ООН по окружающей среде ЮНЕП
- Список химических веществ и полимеров, вызываюзих озабоченность;
- Критерии для одноразовых пластиковых изделий и их переень;
- Микро- и нанопластик;
- Мониторинг пластикового загрязнения;
- Снижение углеводородных полимеров.
- 2. «Зеленая сделка» Европейского союза (новый регламент ЕС по упаковке и отходам).
- Увеличение содержания переработанного полимера; Маркировка по микропластику.
- Вся упаковка подлежит вторичной переработке (дизайн упаковки).
- 3. Система РОП
- 4. Национальный проект «Продовольственная безопасность»
- нет возможности реализации проекта без упаковки
- строгий контроль НМВ во вторичном сырье

Коэффициент применяется по каждой группе товаров и (или) упаковки, включенных в перечень товаров, упаковки, отходы от использования которых подлежат утилизации, утверждаемый Правительством Российской Федерации в соответствии с пунктом 5 статьи 24.2 Федерального закона "Об отходах производства и потребления« 89-ФЗ (ПП 29.12.2023 № 2392)

КЭ= 1+Кизвл+Ктехн+Кцикл+Кпотр.

Кизвл. - критерий сложности извлечения отходов от использования товаров.


Ктехн - критерий наличия технологической возможности утилизации отходов от использования товаров.

К цикл - критерий, характеризующий изменение физических, химических и механических свойств материалов при многократном использовании с учетом возможного количества циклов переработки отходов от использования товаров для получения товаров (продукции), назначение которых аналогично полученным из первичного сырья.

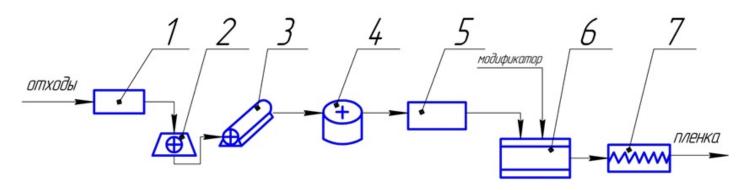

К потр - критерий, характеризующий востребованность вторичного сырья, полученного из отходов от использования товаров, для использования при производстве товаров (продукции).

Схема «замкнутого цикла: производства, потребления и переработки упаковки» или К цикл

Национальный проект «Экология» и Федеральный проект «Экономика замкнутого цикла»

- 1 бункер;
- 2 дробилка;
- 3 моечная машина;
- 4 центрифуга;
- 5 сушильная установка;
- 6 смеситель;
- 7 экструдер

Продукт: гранулы (дробленка, гранулы, пленка, упаковка, изделие)

Многократная переработка полимеров – К цикл?

Исполнители: «РОССИЙСКИЙ БИОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ (РОСБИОТЕХ)» «Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук» «Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук» Акционерное общество «Институт пластмасс им. Г.С. Петрова»

Объекты исследования - полимерные гранулы производства ООО «Сибур»:

- ПС: марка 585 сфер.гр 1197227;
- ПВХ: с пластификатором;
- ПЭТ: Чистый (Полиэф);
- ПЭНД (HDPE): Литьевая HD 45552 IM
- ПЭНД (HDPE): Экструзионно-выдувная HD 10530

LB

- ПЭНД (HDPE): Плёночная PE 10500 FE
- ПЭВД (LDPE): Плёночная 15803-020
- ПЭВД (LDPE): Плёночная LD 40251 FE
- ПП: Литьевой РР Н030 GР
- ПП: Экструзионный PP R015 TF

Оборудование для многократной переработки «экструзия-измельчение» полимеров

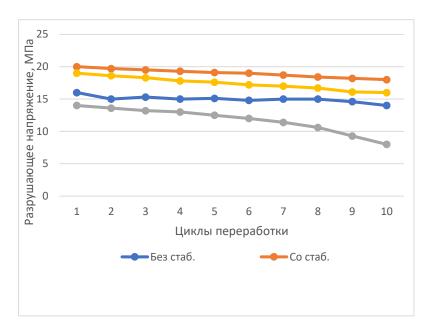
Экструдер для стренг

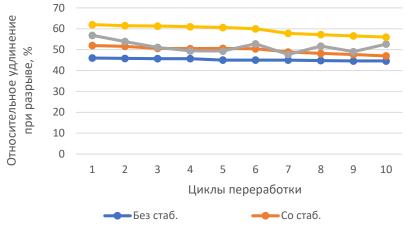
Экструдер для получения пленок

Экструдер для получения экспериментальных образцов (Институт Синтетических полимеров РАН)

Экструдер для переработки ПВХ

Интервал температур переработки:


ПЭВД: 180 – 205 °С, ПЭНД: 180 - 220 °С, ПП: 215 – 225 °С, ПС:


190 – 200 °С, ПЭТФ: 250-265 °С, ПВХ: 160 – 175 °С

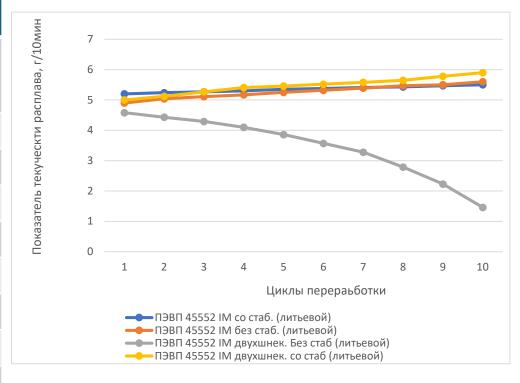
Наименование показателя	Стандарт метода	Прибор для исследования
Определение показателя	ГОСТ 11645-2021(ISO 1133-1:2011) «Методы	ИИРТ
текучести расплава	определения показателя текучести расплава	
	термопластов»	
Исследование температуры	метод дифференциальной сканирующей	DSC 204 F1 Phoenix (Netzsch,
стеклования, плавления,	калориметрии	Германия)
энтальпию полимеров		
Изменение химической	метод Фурье–ИК–спектроскопии	Фурье-спектрометр FTIR
структуры		
Разрушающее напряжение,	ГОСТ 14236–81 «Пленки полимерные. Методы	разрывная машина РМ-50,
относительное удлинение	испытания на растяжение»	Instron A24
при разрыве, предел		
текучести		
Ударная вязкость полимеров	ГОСТ 19109, ГОСТ 4648-2014 метод ударной	универсальная испытательная
	вязкости по Изоду	машина Z020 фирмы Zwick/Roell
Плотность	Пикнометрический метод	Стандартные денситометры по растворам
Средняя молекулярная	Гель-проникающая хроматография (ГПХ)	хроматограф высокого
масса		давления, оснащенный
Миграция	TP TC 005/2011 «О безопасности упаковки».	газовый хроматограф
низкомолекулярных		«Кристаллюкс 4000М»
веществ		

Исследование ПЭВД при многократной переработке

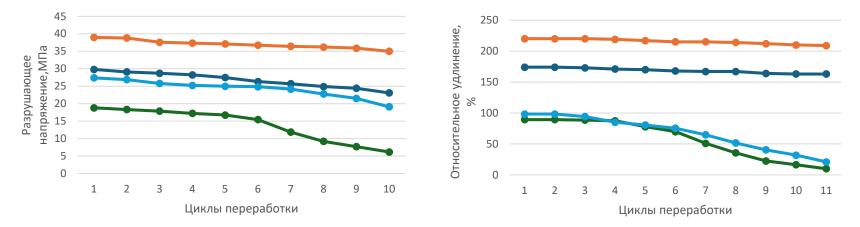
Марка ПЭВД	Наличи е стабил изатор	Количеств о шнеков в экструдере	Процент изменения свойств полимера после 10 циклов переработки «измельчение- экструзия»					
	a		ПТР	σ_{p}	ε_{p}	MM	Тпл	
LD 40251 FE	нет	1	+5,0	- 12,0	+14,0	-2,5	- 0,8	
пленочная	да	1	+7,0	-10,0	- 19,0	+0,02	+ 1,7	
	нет	2	-7,0	-31,0	-37,0	-3,1	-0,8	
	да	2	-5,0	-16,0	-26,0	-1,2	+0,8	
15803-20	нет	1	+ 35,0	- 12,5	- 3,0	-5,2	+1,7	
пленочная	да	1	+ 14,0	-22,2	- 10,0	-0,4	- 0,8	
	нет	2	+37,0	-22,0	-6,9	-4,6	-1,7	
	да	2	+17,2	-24,6	-9,7	-1,7	-0,8	

Технологические и эксплуатационные показатели ПЭВД при вторичной переработке в различных условиях на протяжении 10 циклов остаются на уровне доверительного интервала (КС не более 20%), что свидетельствует о возможности использования вторичной переработки ПЭВД до 10 циклов для переработки в изделие без потери свойств в силу следующих закономерностей:

- 1. При повторной переработке за 10 циклов на стандартном одношнековом экструдере изменение физикомеханических свойств ПЭВД составило не более от 3 до 20%, при критических условиях переработки на двушнековом экструдере от 6 до 34%. При этом стабилизатор стабилизирует прочностные характеристики до 18-20%.
- 2. Многократная переработка снижает T_{nn} полимера не более чем на 2 °C. Также наблюдается уменьшение количества кислородсодержащих групп в образцах, полученных с применением стабилизатора, и увеличивается при переработке в двушнековом экструдере. Предел изменения кислородсодержащих групп не значительный.
- 3. Изменение молекулярной массы ПЭВД составляет не более 5 %, что является незначительным для полимера при вторичной переработке.
- 4. Индекс желтизны для ПЭВД изменяется от 1-го к 10-му циклу в пределах 5-7 %.



Исследование ПЭНД при многократной переработке



Марка ПЭНД	Наличие стабилиза тора	Количес тво шнеков в экструд	полимера после 10 циклов					
		ере	ПТР	σ_{p}	ε_{p}	MM	Тпл	
пэнд	нет	1	+16,8	-15,2	-23,1	-1,6	-3,4	
45552	да	1	+7,7	-9,6	-22,2	-0,8	-3,4	
	нет	2	-46,3	+6,9	-46,3	-2,1	+0,7	
	да	2	+19,6	-10,8	+8,2	-0,2	-1,4	
пэнд	нет	1	-16,7	-13,8	-35,1	-2,2	-1,4	
10500	да	1	+15,4	-26,0	-28,0	-0,2	-2,8	
	нет	2	-39,7	-36,2	-21,5	-2,6	-2,8	
	да	2	+11.1	-23,9	-14,5	-1,1	-2,1	

Изменение показателя текучести расплава после 10 циклов переработки ПЭНД

Многократная переработка ПП

Выводы.

ПП перерабатывается 8 циклов без стабилизатора и 10 циклов со стабилизатором введенном в полимер, поскольку отмечаются следующие закономерности:

- 1. Введение стабилизатора в ПП при многократной переработке положительно отражается на характеристиках физико-механических свойств ПП. Так, при введении стабилизатора в ПП за 10 циклов переработки изменились значения разрушающего напряжения и относительного удлинения при разрыве не более, чем на 10-15%, тогда как в ПП образцах без стабилизатора хорошо заметно уменьшение этих показателей с 8 цикла.
- 2. ПП марок R015 и H030 со стабилизаторами имеет высокие эксплуатационных и технологических свойств при переработки за 10 циклов. При переработке 10 циклов изменения физико-механических свойств составили не более 25-30%, при этом образцы перерабатывались как на одношнековом экструдере, так и на двухшнековом, имеющие высокие сдвиговые напряжения.
- 3. Изменение молекулярной массы, индекса кислородсодержащих групп для ПП не превышает 8% для нестабилизированного ПП, и 4% для образцов ПП со стабилизатором не зависимо от типа экструдера и введение стабилизатора.

Исследование ПВХ при многократной переработке

Полимер	Тип экструдера		вменения св реработки «		Рекомендации		
		ПТР	σ_{p}	ϵ_{p}	MM	Тпл	
ПВХ	одношнеко вый	+35,1	-16,2	+79,4	-2,12	-0,6	Нет превышения показателей, может перерабатываться 10 циклов
	конусный	+31,6	-16,7	-15,8	-2,19	-0,6	7

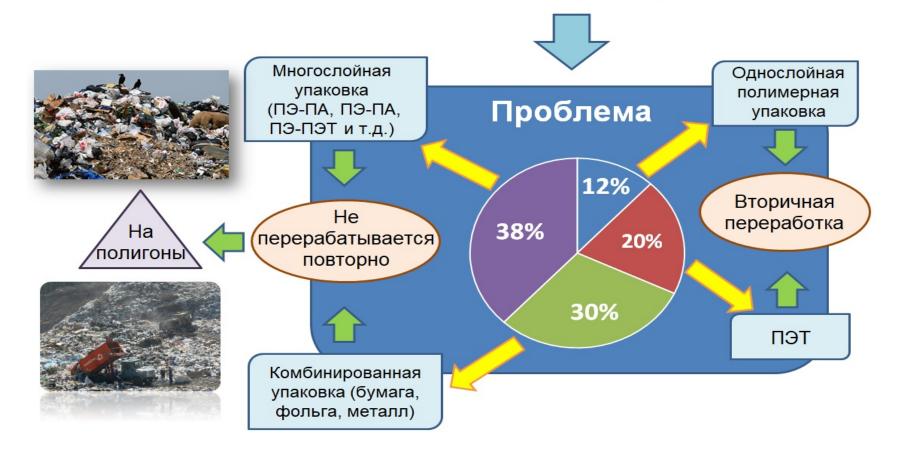
Количество циклов вторичной переработки ПВХ - 10, поскольку отмечаются следующие закономерности :

- 1. Изменение ПТР за 10 циклов переработки «экструзия измельчение» наблюдается увеличение данного показателя на 35-40%, при этом данные значения не влияют на качество экспериментальных образцов и среднюю молекулярную массы, которая снизилась всего на 2,1%.
- 2. Десятикратная переработка ПВХ по циклам, включающего измельчение и экструзию, уменьшает разрушающее напряжение и предел текучести не более чем на 15-20%, при этом относительное удлинение при разрыве изменяется в пределах доверительного интервала.

ИССЛЕДОВАНИЕ САНИТАРНО-ГИГИЕНИЧЕСКИХ СВОЙСТВ

Полимер,	7 суто	K		14 сут	ок		21 сут	'КИ		28 cy	ток	
ЦИКЛ	20°C	25°C	30°C	20°C	25°C	30°C	20°C	25°C	30°C	20°C	25°C	30°C
ПЭВД 1 цикл	0,2	0,3	0,5	0,5	0,6	1	0,5	0,9	1	0,8	1	1
ПЭВД 10 цикл	0,5	0,8	1	0,7	0,8	1	0,3	0,8	1	0,8	1	1,1
ПП	0,1	0,3	0,5	0,1	0,3	1	0,2	0,9	1	0,3	1	1
ПП цикл	0,3	0,8	1	0,5	0,8	1	0,6	0,8	1	0,8	1	1,3

Органолептическая оценка проведена по бальной системе. 0 – нет запаха, 5 – сильный запах



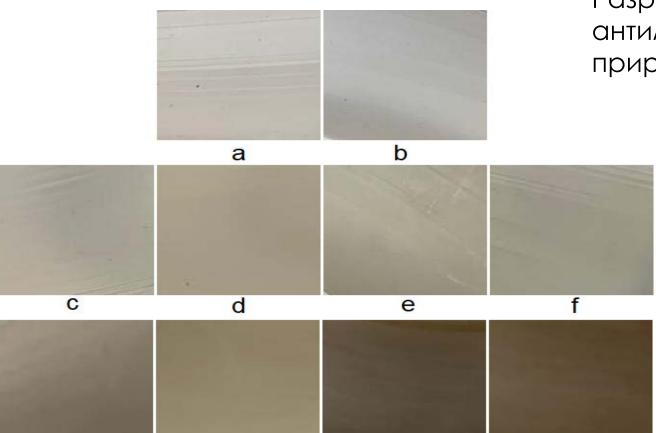
Доля многослойной упаковки

Дизайн упаковки - требования к упаковке по функциональным свойствам

Барьерные

- сохранение продукта от внешних воздействий, включающих кислород воздуха, водяных паров, солнечных лучей и т.п.
- защита пищевых продуктов от микроорганизмов, заражения и загрязнения
- защита окружающей среды от протечки содержимого, в том числе агрессивных продуктов и токсичных веществ

Физикомеханические


- сохранение продукта от механических повреждений при логистике и использовании
- удобство использование / удобство вскрытия, использования
- герметичность

Химические

- безопасность не изменять органолептические свойства, консистенцию продукта
- безопасность не выделять вещества в пределах ПДК согласно
 Регламент ТР ТС 005/2011 «О безопасности упаковки» и Регламент ТР
 ТС 007/2011 «О безопасности продукции, предназначенной для детей и
 подростков»

Монополимерная упаковка для пролонгации сроков хранения Разработка полимерных материалов с антимикробными свойствами

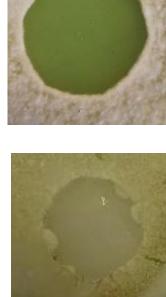
Разработка материалов с антимикробными добавками природного происхождения

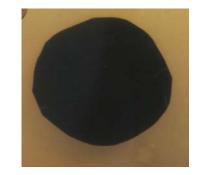
Полимерные материалы с антимикробными свойствами

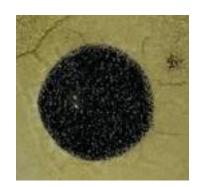
Влияние группы В. Sub

Сорбиновая кислота

УСТАНОВЛЕНИЕ СРОКОВ ХРАНЕНИЯ ПИЩЕВЫХ ПРОДУКТОВ КОНТРОЛЬ


Хранение в упаковке производителя


Хранение в исследуемом образце



ОЭРМ НЕДИТПИЦЫ

исследуемый образец

Наименование полимера для упаковки	Достоинства	Недостатки
Полиэтилен высокого давления	Переработка всеми методами с получением пленок, упаковки любой формы (канистры, бочки, бутылки). Обладает хорошими физико-механическими свойствами: прочность при растяжении и сжатии, стойкость к удару и раздиру. Высокая морозостойкость (от -60 до -70 °C). Водо- и паронепроницаем. Имеет высокую химическую стойкость Отличная герметизация - легко свариваются тепловой сваркой и образуются прочные швы.	Проницаем для газов, поэтому непригодны для упаковки продуктов, чувствительных к окислению. Имеет низкую жиро- и маслостойкость Температурная обработка не осуществляется без другого термостойкого материала. Невозможно склеить.
Полиэтилен низкого давления	Переработка всеми методами с получением пленок, упаковки любой формы (канистры, бочки, бутылки). Обладает высокими физико-механическими свойствами: прочность при растяжении и сжатии, стойкость к удару и раздиру. Высокая морозостойкость (от -60 до -70 °C). Водо- и паронепроницаем. Имеет высокую химическую стойкость Имеет хорошую жиро- и маслостойкость Отличная герметизация - легко свариваются тепловой сваркой и образуются прочные швы.	Средняя проницаемость для газов, поэтому есть ограничения по хранению. Термообработка возможна до 110°С 3-5 сек. Невозможно склеить.

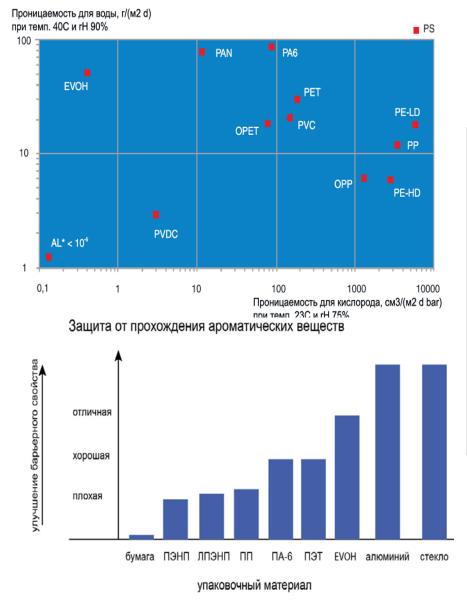
Полипропилен	Переработка всеми методами с	Низкая морозостойкость (от 0 до -5 °C).
	получением пленок, лотков, упаковки	
	любой формы. Легкость	
	термоформования для лотков.	
	Обладает высокими физико-	
	механическими свойствами:	
	прочность при растяжении и сжатии,	
	стойкость к удару и раздиру.	
	Низкая проницаемость для газов.	
	Водо- и паронепроницаем.	
	Имеет высокую химическую стойкость	
	Имеет высокую жиро- и	
	маслостойкость	
	Отличная герметизация.	
Полистирол и вспененный	Переработка всеми методами с	Средняя проницаемость для газов, поэтому
полистирол	получением пленок, лотков,	есть ограничения по хранению.
	стаканчиков. Легкость	Низкая стойкость к удару и раздиру.
	термоформования для лотков и	Герметизация особым методом.
	стаканов.	
	Обладает хорошими физико-	
	механическими свойствами:	
	прочность при растяжении и сжатии.	
	Высокая морозостойкость (до -40 °C).	
	Водо- и паронепроницаем.	

Полиэтилентерефталат	Переработка всеми методами с	Низкая герметизация.
	получением пленок, лотков, упаковки	
	любой формы. Легкость	
	термоформования для лотков,	
	стаканов.	
	Обладает высокими физико-	
	механическими свойствами:	
	прочность при растяжении и сжатии,	
	стойкость к удару и раздиру.	
	Низкая проницаемость для газов.	
	Водо- и паронепроницаем.	
	Имеет высокую жиро- и	
	маслостойкость.	
Полиамиды	Переработка всеми методами с	Низкая герметизация.
	получением пленок, литьевых	Водо- и паропроницаем при повышенных
	изделий.	температурах. При контакте с водой набухает
	Обладает высокими физико-	от 3-10%.
	механическими свойствами:	
	прочность при растяжении и сжатии,	
	стойкость к удару и раздиру.	
	Низкая проницаемость для газов.	
	Имеет высокую жиро- и	
	маслостойкость.	

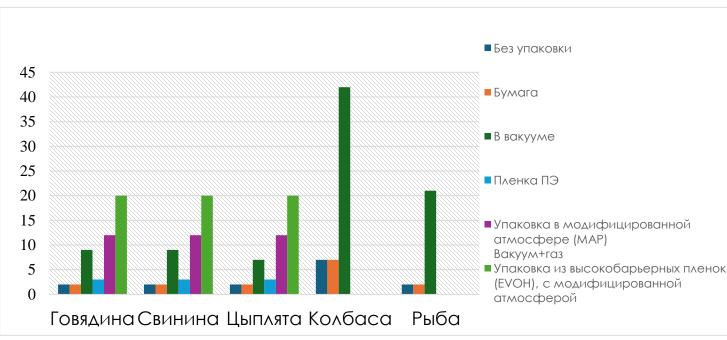
Сополимер этилена с	Переработка всеми методами с	Дорогой, поэтому используется как
виниловым спиртом	получением пленок, лотков,	барьерный слой в многослойных упаковках
	упаковки любой формы. Легкость	(обычно до 5-7мкм)
	термоформования для лотков,	
	стаканов.	
	Обладает высокими физико-	
	механическими свойствами:	
	прочность при растяжении и сжатии,	
	стойкость к удару и раздиру.	
	Низкая проницаемость для газов.	
	Водо- и паронепроницаем.	
	Имеет высокую жиро- и	
	маслостойкость	
	Отличная герметизация.	
Сополимер этилена с	Переработка всеми методами с	Дорогой, поэтому используется как
винилацетатом	получением пленок, лотков,	барьерный слой в многослойных упаковках
	упаковки любой формы. Легкость	(обычно до 5-7мкм)
	термоформования для лотков,	
	стаканов.	
	Обладает высокими физико-	
	механическими свойствами:	
	прочность при растяжении и сжатии,	
	стойкость к удару и раздиру.	
	Низкая проницаемость для газов.	
	Водо- и паронепроницаем.	

Свойства однослойных материалов

Материал		Свойства								
	C	Γ	В	T	Ж	П	Π*	H	ПР	M
AI фольга		+	+	+	+	+		+	+	+
Бумага						+		+	+	+
ПВД	+		+			+				+
пнд	+		+	+			+		+	+
ПП	+		+	+	+		+		+	
пвдх	+	+	+		+	+				+
ПЭТФ		+	+	+	+	+			+	+
ПА	+	+		+	+	+			+	+
ПС			+		+			+	+	+


Примечание: С – способность к термической сварке, Г – газонепроницаемость, В – влагонепроницаемость, Т – теплостойкость, Ж – жиростойкость, П – возможность нанесения красочной печати, П * – возможность нанесения печати при соответственной поверхностной обработке (коронным разрядом, газопламенная обработка), Н – непрозрачность, т.ч. для ультрафиолетового излучения (УФ), ПР – прочность, М – морозостойкость

Барьерные свойства упаковочных материалов

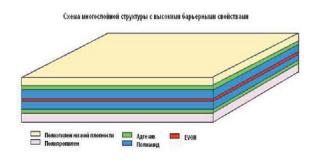

Тип материала	Паропроницаемость, (г/м² за 24 ч при 90% относительной влажности и температуре 38 °C)	Кислородопрони цаемость, (см ³ /м ² за 24 ч при 23 °C)	Ароматонепрониц аемость
ПВД/LDPE	15-20	3000-13000	плохая
ПНД/HDPE	3-12	500-3000	плохая
ПП/РР	8-10	1000-6000	плохая
ПВДХ/PVDC	1-5	1-3	отличная
CЭBC/EVOH	15-20	0,2-2,5	отличная
ΠC/PS	120	2500-7700	плохая
ПА/РА	150	30-100	хорошая
ПЭТФ/РЕТ	15-30	50-150	хорошая

Примечание: по свойствам сополимер этилена с винилацетатом близок с сополимером этилена с виниловым спиртом (EVOH).

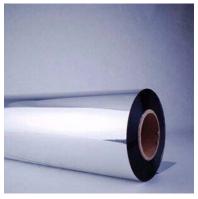
БАРЬЕРНЫЕ УПАКОВОЧНЫЕ МАТЕРИАЛЫ

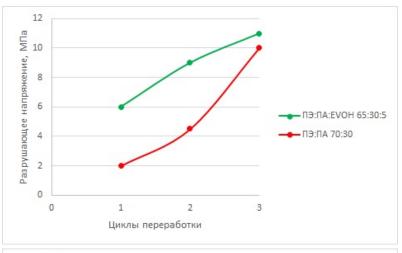
СРОК ГОДНОСТИ В ЗАВИСИМОСТИ ОТ СПОСОБА УПАКОВКИ, СУТКИ

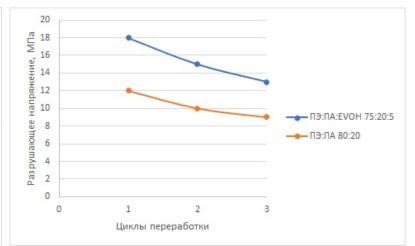
говядина в полутушах и четвертинах, свинина - свинина в полутушах, цыплята - охлажденные тушки цыплят-бройлеров

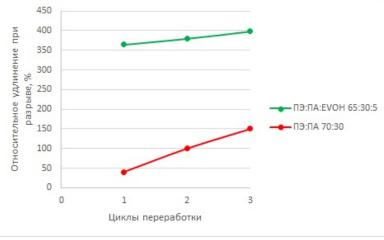

(СанПиН 2.3.2.1324-03), колбаса - колбаса варено-копченая в белковой оболочке, рыба - рыба соленая (собственные исследования)

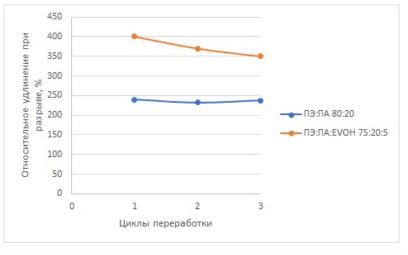
Многослойная полимерная упаковка готова к повторной переработке - исследования при многократной переработке



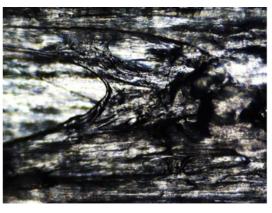


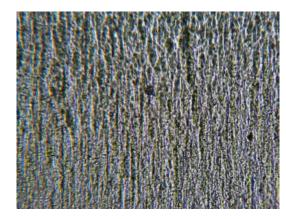

Результаты исследования новых экспериментальных образцов из отходов многослойной упаковки из ПЭ и ПА





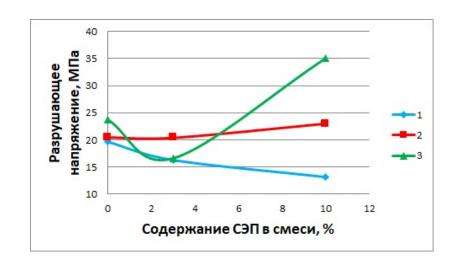
Физико-механические свойства ПЭ-ПА композиций



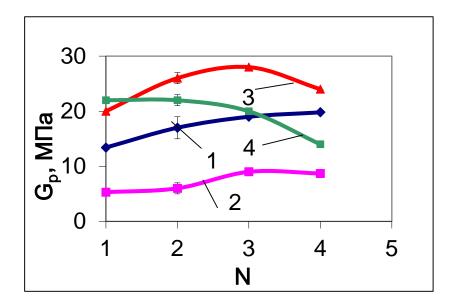


Микрофотографии полимерной композиции ПЭ:ПА 70:30, 3 цикл переработки

Без добавления сополимера


С добавлением сополимера EVOH

Результаты исследования новых экспериментальных образцов из отходов многослойной упаковки из ПЭ и ПП



Деформационно-прочностные характеристики

ЦКП «Перспективные упаковочные решения» -

реализация НИР-НИОКР проектов и платформа для подготовки специалистов высокого уровня квалификации

НОВАЯ лаборатория по испытаниям упаковки 3 октября 2024г.

В настоящее время ЦКП функционирует с материально-техническим обеспечением:

Открыты в 2017-2018г

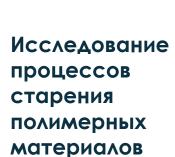
Лаборатории композитных материалов (ФЦП «Реализация прикладных НИР») Лаборатории современного промышленного дизайна и маркетинга

и образования новых лабораторий, открытых в 2023г

Лаборатория биополимеров и рециклинга упаковки (Приоритет 2030) Лаборатория «Карбоновый полигон – новые композиты» Лаборатория «Оптимизация упаковки и транспортные испытания» (ГК ГОТЭК)

НАУЧНО-ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР «ПЕРСПЕКТИВНЫЕ УПАКОВОЧНЫЕ РЕШЕНИЯ И ТЕХНОЛОГИИ РЕЦИКЛИНГА»

Определение качества полимерного сырья, в том числе вторичного сырья



Санитарно-гигиенические и структурные исследования полимерных материалов

Исследование антимикробных свойств полимерных материалов и хранение в упаковке

РОСБИОТЕХ РОССИЙСКИЙ БИОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Лаборатория «Оптимизация упаковки и транспортных испытаний»

Определение физико-механических свойств материалов:

- ГОСТ 20683-97 «Картон тарный. Сопротивление торцевому сжатию»
- ГОСТ 9895-2013 «Определение сопротивлению сжатия. Метод испытания на коротком расстоянии»
- ГОСТ 304360-96 «Бумага и картон. Определение прочности при растяжении» на универсальной разрывной машине ИТС 8111

Лаборатория биополимеров и рециклинга упаковки

Разработка и апробация уникальных методик

- 1. Способность к биоразложению метод Штурма, разработанная в университете (протокол № 1 от 19.09.2017 г., переутверждение 07.06.2019г.), соответствующей ASTM D 5209-92, 5247-92, ОСDЕ 301B, ОСDЕ 301 F, ГОСТ 32433-2013 «Методы испытаний химической продукции, представляющей опасность для окружающей среды. Оценка биоразлагаемости органических соединений методом определения диоксида углерода в закрытом сосуде». Испытания в аэробных условиях компостирования (с принудительной аэрацией) и в анаэробных условиях (без доступа кислорода воздуха).
- 2. Исследования упаковочных материалов в процессе многократной переработки моделирование процесса рециклинга

Новая лаборатория испытаний упаковки ООО «ОРБИС»

Кислородопроницаемость

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА

Стойкость к раздиру и удару Коэффициент трения

Прочность и удлинение при

растяжении

Labthink

Оборудование для проведения исследований

- Экструзионные мини-линии для получения экспериментальных образцов (гранул, пленок), мини термопластавтомат для литьевых изделий.
- Аппарат для определения показателя текучести расплава термопластов ПТР-ЛАБ-02.
- Разрывные машины Labthink с программным обеспечением.
- Ударопрочность, коэффициент трения, показатель истираемости материалов Labthink
- Комплекс методов испытаний на физико-механических испытаний картона и бумаги (сжатие, изгиб, растяжение, сжатие коробки) Разрывные машины
- Прибор для определения кислородопроницаемости Labthink.
- Прибор для определения паропроницаемости с компьютером и программным обеспечением Labthink.
- Упаковочные полуавтоматы с опцией газонаполнения INDOKOR IVP-450/А для установления сроков хранения пищевых продуктов в различных средах и под вакуумом.
- Микробиология. Определение токсичности. Счетчик колоний микроорганизмов.
- Газохроматограф Хроматэк Кристалл 9000.1. Муфельная печь.
- ИК спектроскопия FTIR
- Камера Тепло-холод, УФ камера
- ДСК (РАН)
- Электронная микроскопия (РАН).

Методы исследования

- Исследование барьерных свойств упаковочных материалов (жиростойкость, паропроницаемость, газопроницаемось (по кислороду), ароматопроницаемость, водопоглощение).
- Исследование миграции низкомолекулярных веществ по ТР ТС 005/2011 о безопасности упаковки.
- Определение качества изделия: определение плотности, влажности, содержание примесей.
- Исследование технологических параметров переработки полимерных композиций и их структуры.
- Определения физико-механических свойств упаковок, пленок, изделий из полимеров, картона и бумаги, комбинированных материалов и биополимерных систем.
- Исследование процессов биоразложения материалов, 3 метода (методы ГОСТ, ASTM, включая метод по выделению углекислого газа и метод прогнозирования).
- Исследование биосовместимости и токсичности.
- Исследование антимикробных свойств, грибостойкости, определение сроков хранения пищевой продукции (ГОСТ, МУК), (овощи, фрукты и другие органолептическим методом).
- Исследование процессов деструкции полимерных материалов в различных условиях.
- Изучение химических свойств материалов, влияние модельных сред, включая модели пищевых продуктов и лекарственные препараты
- Разработка нормативно-технической документации (проекты технологического регламента на производство, технических условий на продукцию, рекомендации по областям использования) по комплектности.
- Маркетинговые исследования и разработка бренда.

Анализ: полная цепочка разработок и исследований

Для R&D

Разработка и внедрение

Для производства

Апробация новых материалов и добавок, разработка упаковочных решений

Для ритейла

Тренды упаковки и кейсы

Для закупок и продаж

Дизайн, брендинг, маркетинг, ценообразование с минимизацией затрат

Для логистики и экологии

Оптимизация упаковки Дизайн состава материала Многократная переработка

Основные направления НИР

Nº	Направление
1	Разработка технологии переработки отходов упаковки Рециклинг – химическая утилизация – новые полимеры
2	Разработка функциональных упаковочных материалов Уровни барьерных и физико-механических свойств
3	Создание упаковочных материалов с антимикробными свойствами

Nº	Направление
	Разработка биоразлагаемых
	упаковочных материалов на основе
4	природных и синтетических полимеров
	с регулируемым срок разложения
	/полимеры биотехнологии
5	Защитные и съедобные покрытия
	•
	Дизайн структуры материала
6	Комбинированные и многослойные
O	материалы / монослойные материалы
	Maraprianal / Maria a Maria prianal
7	Конструкция и дизайн упаковки
8	Аналитические исследования

kirshia@mgupp.ru 8-916-173-21-58

